Search results

1 – 10 of 593
Article
Publication date: 21 December 2023

Mehran Ghasempour-Mouziraji, Daniel Afonso, Saman Hosseinzadeh, Constantinos Goulas, Mojtaba Najafizadeh, Morteza Hosseinzadeh, D.D. Ganji and Ricardo Alves de Sousa

The purpose of this paper is to assess the feasibility of analytical models, specifically the radial basis function method, Akbari–Ganji method and Gaussian method, in conjunction…

Abstract

Purpose

The purpose of this paper is to assess the feasibility of analytical models, specifically the radial basis function method, Akbari–Ganji method and Gaussian method, in conjunction with the finite element method. The aim is to examine the impact of processing parameters on temperature history.

Design/methodology/approach

Through analytical investigation and finite element simulation, this research examines the influence of processing parameters on temperature history. Simufact software with a thermomechanical approach was used for finite element simulation, while radial basis function, Akbari–Ganji and Gaussian methods were used for analytical modeling to solve the heat transfer differential equation.

Findings

The accuracy of both finite element and analytical methods was validated with about 90%. The findings revealed direct relationships between thermal conductivity (from 100 to 200), laser power (from 400 to 800 W), heat source depth (from 0.35 to 0.75) and power absorption coefficient (from 0.4 to 0.8). Increasing the values of these parameters led to higher temperature history. On the other hand, density (from 7,600 to 8,200), emission coefficient (from 0.5 to 0.7) and convective heat transfer (from 35 to 90) exhibited an inverse relationship with temperature history.

Originality/value

The application of analytical modeling, particularly the utilization of the Akbari–Ganji, radial basis functions and Gaussian methods, showcases an innovative approach to studying directed energy deposition. This analytical investigation offers an alternative to relying solely on experimental procedures, potentially saving time and resources in the optimization of DED processes.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 December 2019

C. Sulochana and S.R. Aparna

The purpose of this paper is to analyze heat and mass transport mechanism of unsteady MHD thin film flow of aluminium–copper/water hybrid nanofluid influenced by thermophoresis…

Abstract

Purpose

The purpose of this paper is to analyze heat and mass transport mechanism of unsteady MHD thin film flow of aluminium–copper/water hybrid nanofluid influenced by thermophoresis, Brownian motion and radiation.

Design/methodology/approach

The authors initially altered the time dependent set of mathematical equations into dimensionless form of equations by using apposite transmutations. These equations are further solved numerically by deploying Runge–Kutta method along with shooting technique.

Findings

Plots and tables for skin friction coefficient, Nusselt number, Sherwood number along with velocity, temperature and concentration profiles against pertinent non-dimensional parameters are revealed. The study imparts that aluminium–copper hybrid nanoparticles facilitate higher heat transfer rate compared to mono nanoparticles. It is noteworthy to disclose that an uplift in thermophoresis and Brownian parameter depreciates heat transfer rate, while concentration profiles boost with an increase in thermophoretic parameter.

Research limitations/implications

The current study targets to investigate heat transfer characteristics of an unsteady thin film radiative flow of water-based aluminium and copper hybrid nanofluid. The high thermal and electrical conductivities, low density and corrosion resistant features of aluminium and copper with their wide range of industrial applications like power generation, telecommunication, automobile manufacturing, mordants in leather tanning, etc., have prompted us to instil these particles in the present study.

Practical implications

The present study has many practical implications in the industrial and manufacturing processes working on the phenomena like heat transfer, magnetohydrodynamics, thermal radiation, nanofluids, hybrid nanofluids with special reference to aluminium and copper particles.

Originality/value

To the best extent of the authors’ belief so far no attempt is made to inspect the flow, thermal and mass transfer of water-based hybridized aluminium and copper nanoparticles with Brownian motion and thermophoresis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 August 2019

A.S. Dogonchi, Muhammad Waqas, S.R. Afshar, Seyyed Masoud Seyyedi, M. Hashemi-Tilehnoee, Ali J. Chamkha and D.D. Ganji

This paper aims to study the impacts of viscous dissipation, thermal radiation and Joule heating on squeezing flow current and the heat transfer mechanism for a…

Abstract

Purpose

This paper aims to study the impacts of viscous dissipation, thermal radiation and Joule heating on squeezing flow current and the heat transfer mechanism for a magnetohydrodynamic (MHD) nanofluid flow in parallel disks during a suction/blowing process.

Design/methodology/approach

First, the governing momentum/energy equations are transformed into a non-dimensional form and then the obtained equations are solved by modified Adomian decomposition method (ADM), known as Duan–Rach approach (DRA).

Findings

The effect of the radiation parameter, suction/blowing parameter, magnetic parameter, squeezing number and nanoparticles concentration on the heat transfer and flow field are investigated in the results. The results show that the fluid velocity increases with increasing suction parameter, while the temperature profile decreases with increasing suction parameter.

Originality/value

A complete analysis of the MHD fluid squeezed between two parallel disks by considering Joule heating, thermal radiation and adding different nanoparticles using the novel method called DRA is addressed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 September 2023

Takia Ahmed J. Al-Griffi and Abdul-Sattar J. Ali Al-Saif

The purpose of this study is to analyze the two-dimensional blood flow in the artery slant from the axis at an angle with mild stenosis under the joint effects of the…

Abstract

Purpose

The purpose of this study is to analyze the two-dimensional blood flow in the artery slant from the axis at an angle with mild stenosis under the joint effects of the electro-osmotic, magnetic field, chemical reaction and porosity using a new analytical method. In addition, the mathematical model presented by the researchers Tripathi and Sharma (2018c) was successfully developed by adding the effect of electro-osmosis and studying the impact of the new addition in the developed model on blood flow.

Design/methodology/approach

A new analytical method was used to find the analytical approximate solutions of two-dimensional blood flow in artery slant from the axis at an angle with mild stenosis. This technique is based on integrating the Akbari-Ganji and the homotopy perturbation methods.

Findings

The results of axial velocity, concentration, temperature and the wall shear stress for blood flow were analyzed in the cases of the absence and presence of electro-osmosis. Furthermore, in these two states of electro-osmosis, a contour plot was created to show the difference in the profile of velocity to the flow of blood when the magnetic field was increased and the altitude of stenosis was increased. The results showed that the new technique is effective and has high accuracy to determine the analytical approximate solutions of two-dimensional blood flow in artery slant from the axis at an angle with mild stenosis. The validity, utility and necessity of the new method were illustrated from the graphs of the new solutions; in addition, there is an excellent agreement with the results of previous studies.

Originality/value

This paper focuses on developing the mathematical model which was presented by the researchers Tripathi and Sharma (2018c), by adding the effect of the electro-osmosis to it, which has been successfully developed. According to the authors’ modest information, the new system has not been studied before. This current problem is solved by using an innovative approach known as the Akbari-Ganji homotopy perturbation method (AGHPM) which has not been used before in two cases: the presence and absence of the effect of electro-osmosis. This new technique afford new with effective and has high accuracy results. Furthermore, the new study (i.e. adding effect of electro-osmosis) with the applications of (variable viscosity, magnetic field, chemical reaction and porosity) illustrated the importance of applying electro-osmosis and how doctors can benefit from it during surgeries through proper use.

Article
Publication date: 3 July 2017

M. Sheikholeslami and D.D. Ganji

Nanofluid flow which is squeezed between parallel plates is studied using differential transformation method (DTM). The fluid in the enclosure is water containing different types…

Abstract

Purpose

Nanofluid flow which is squeezed between parallel plates is studied using differential transformation method (DTM). The fluid in the enclosure is water containing different types of nanoparticles: Al2O3 and CuO. The effective thermal conductivity and viscosity of nanofluid are calculated by Koo–Kleinstreuer–Li (KKL) correlation. The comparison between the results from DTM and numerical method are in well agreement which proofs the capability of this method for solving such problems. Effects of the squeeze number and nanofluid volume fraction on flow and heat transfer are examined. Results indicate that Nusselt number augment with increase of the nanoparticle volume fraction. Also, it can be found that heat transfer enhancement of CuO is higher than Al2O3.

Design/methodology/approach

The problem of nanofluid flow which is squeezed between parallel plates is investigated analytically using DTM. The fluid in the enclosure is water containing different types of nanoparticles: Al2O3 and CuO. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL correlation. In this model, effect of Brownian motion on the effective thermal conductivity is considered. The comparison between the results from DTM and numerical method are in well agreement which proves the capability of this method for solving such problems. The effect of the squeeze number and the nanofluid volume fraction on flow and heat transfer is investigated. The results show that Nusselt number increase with increase of the nanoparticle volume fraction. Also, it can be found that heat transfer enhancement of CuO is higher than Al2O3.

Findings

The effect of the squeeze number and the nanofluid volume fraction on flow and heat transfer is investigated. The results show that Nusselt number increase with increase of the nanoparticle volume fraction. Also, it can be found that heat transfer enhancement of CuO is higher than Al2O3.

Originality/value

This paper is original.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2021

Mostafa Esmaeili, Hamed Hashemi Mehne and D.D. Ganji

This study aims to explore the idea of solving the problem of squeezing nanofluid flow between two parallel plates using a novel mathematical method.

Abstract

Purpose

This study aims to explore the idea of solving the problem of squeezing nanofluid flow between two parallel plates using a novel mathematical method.

Design/methodology/approach

The unsteady squeezing flow is a coupled fourth-order boundary value problem with flow velocity and temperature as the desired unknowns. In the first step, the conditions that guarantee the existence of a unique solution are obtained. Then following Green’s function-based approach, an iterative method for solving the problem is developed.

Findings

The accuracy of the method is examined by comparing the obtained results with existing numerical data, indicating excellent agreement between the two. In addition, the effects of nanoparticle shape and volume fraction on the flow and heat transfer characteristics are addressed. The results reveal that although the nanoparticle shape strongly affects the temperature distribution in the squeezing flow, it only has a slight impact on the velocity field. Furthermore, the highest and lowest Nusselt numbers belong to the platelets and spherical nanoparticles, respectively.

Originality/value

A semi-analytical method with computational support is developed for solving the unsteady squeezing flow problem. Moreover, the existence and uniqueness of the solution are discussed for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 February 2024

Bahram Jalili, Milad Sadinezhad Fard, Yasir Khan, Payam Jalili and D.D. Ganji

The current analysis produces the fractional sample of non-Newtonian Casson and Williamson boundary layer flow considering the heat flux and the slip velocity. An extended sheet…

Abstract

Purpose

The current analysis produces the fractional sample of non-Newtonian Casson and Williamson boundary layer flow considering the heat flux and the slip velocity. An extended sheet with a nonuniform thickness causes the steady boundary layer flow’s temperature and velocity fields. Our purpose in this research is to use Akbari Ganji method (AGM) to solve equations and compare the accuracy of this method with the spectral collocation method.

Design/methodology/approach

The trial polynomials that will be utilized to carry out the AGM are then used to solve the nonlinear governing system of the PDEs, which has been transformed into a nonlinear collection of linked ODEs.

Findings

The profile of temperature and dimensionless velocity for different parameters were displayed graphically. Also, the effect of two different parameters simultaneously on the temperature is displayed in three dimensions. The results demonstrate that the skin-friction coefficient rises with growing magnetic numbers, whereas the Casson and the local Williamson parameters show reverse manners.

Originality/value

Moreover, the usefulness and precision of the presented approach are pleasing, as can be seen by comparing the results with previous research. Also, the calculated solutions utilizing the provided procedure were physically sufficient and precise.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 October 2018

A.S. Dogonchi, F. Selimefendigil and D.D. Ganji

The purpose of this study is to peruse natural convection in a CuO-water nanofluid-filled complex-shaped enclosure under the influence of a uniform magnetic field by using control…

Abstract

Purpose

The purpose of this study is to peruse natural convection in a CuO-water nanofluid-filled complex-shaped enclosure under the influence of a uniform magnetic field by using control volume finite element method.

Design/methodology/approach

Governing equations formulated in dimensionless stream function, vorticity and temperature variables using the single-phase nanofluid model with the Koo–Kleinstreuer–Li correlation for the effective dynamic viscosity and the effective thermal conductivity have been solved numerically by control volume finite element method.

Findings

Effects of various pertinent parameters such as Rayleigh number, Hartmann number, volume fraction of nanofluid and shape factor of nanoparticle on the convective heat transfer characteristics are analysed. It was observed that local and average heat transfer rates increase for higher value of Rayleigh number and lower value of Hartmann number. Among various nanoparticle shapes, platelets were found to be best in terms of heat transfer performance. The amount of average Nusselt number reductions was found to be different when nanofluids with different solid particle volume fractions were considered due to thermal and electrical conductivity enhancement of fluid with nanoparticle addition.

Originality/value

A comprehensive study of the natural convection in a CuO-water nanofluid-filled complex-shaped enclosure under the influence of a uniform magnetic field by using control volume finite element method is addressed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 April 2019

Uddhaba Biswal, Snehashish Chakraverty and Bata Krushna Ojha

The purpose of this paper is to carry out a detailed investigation to study the natural convection of a non-Newtonian nanofluid flow between two vertical parallel plates. In this…

Abstract

Purpose

The purpose of this paper is to carry out a detailed investigation to study the natural convection of a non-Newtonian nanofluid flow between two vertical parallel plates. In this study, sodium alginate has been taken as a base fluid and nanoparticles that added to it are copper and silver. Maxwell–Garnetts and Brinkman models are used to calculate the effective thermal conductivity and viscosity of nanofluid, respectively.

Design/methodology/approach

The authors used two methods in this study, namely, Galerkin’s method and homotopy perturbation method.

Findings

This paper investigates the velocity and temperature profile of nanofluid and the real fluid flow between two vertical parallel plates. The impacts of physical parameters such as nanofluid volume fraction and dimensionless non-Newtonian viscosity are discussed.

Originality/value

Coupled non-linear differential equations are solved for velocity and temperature. A model is proposed in such a way that the authors may get the solution of real fluid from the nanofluid by neglecting the nano term. The authors do not require a further calculation for real fluid problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2017

Amir Malvandi, Saeed Heysiattalab, Amirmahdi Ghasemi, D.D. Ganji and Ioan Pop

The purpose of this paper is to theoretically investigate the effects of nanoparticle migration on the heat transfer enhancement at film boiling of nanofluids. The modified…

Abstract

Purpose

The purpose of this paper is to theoretically investigate the effects of nanoparticle migration on the heat transfer enhancement at film boiling of nanofluids. The modified Buongiorno model is used for modeling the nanofluids to observe the effects of nanoparticle migration.

Design/methodology/approach

The governing partial differential equations including continuity, momentum, energy and nanoparticle continuity are transformed to ordinary ones and solved numerically. For nanoparticle distribution, an analytical expression has been found. The results have been obtained for different parameters, including the Brownian motion to thermophoretic diffusion NBT, saturation nanoparticle volume fraction ϕsat and normal temperature difference.

Findings

A closed-form expression for nanoparticle distribution is obtained, and it is indicated that nanoparticle migration significantly affects the flow fields and thermophysical properties of nanofluids. It was shown that temperature gradient at heated wall grows as the migration of nanoparticles increases, which has positive effects on the heat transfer rate. However, decrement of thermal conductivity at heated wall because of nanoparticle depletion plays a negative role in heat transfer enhancement. In fact, there is a tradeoff between thermal conductivity reduction and an increment in temperature gradient at the wall, which determines the net enhancement/deterioration of the heat transfer rate.

Research limitations/implications

Flow has been assumed to be laminar, and the vapor temperature is constant such that boiling is the only heat transfer mechanism between the liquid-vapor interface. Also, the shear stress at the liquid-vapor interface is assumed to be negligible. The film thickness is small relative to the plate length to justify the boundary layer assumptions. Inertia forces are neglected relative to shear stress forces.

Practical implications

Outcomes of the present study are suitable for several heat exchange purposes such as evaporation and condensation in heat pipes, immersion, microchannel cooling of microelectronics and crystal growth.

Originality/value

The novelty of this paper has three aspects: modeling the film boiling of nanofluids considering the effects of nanoparticle migration; how it influences the cooling performance; and an analytical expression for the nanoparticle distribution at film boiling of nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 593